Number of Points of Function Fields over Finite Fields

نویسنده

  • BRUNO KAHN
چکیده

Definition 1. The category Mot∼ is the Karoubian envelope (or idempotent completion) of the quotient of Mot ∼ by the ideal consisting of morphisms factoring through an object of the form M ⊗L, where L is the Lefschetz motive. This is a tensor additive category. If M ∈ Mot ∼ , we denote by M̄ its image in Mot∼. Lemma 1 ([6, Lemmas 5.3 and 5.4]). Let X, Y be two smooth projective irreducible k-varieties. Then, in Motrat, we have Hom(h̄(X), h̄(Y )) = CH0(Yk(X))⊗Q. Remark 1. To any separably generated field K/k we may associate a motive h̄(K) ∈ Motorat. If K is the function field of a smooth projective varietyX, we define h̄(K) as h̄(X). In general, by de Jong’s theorem [4] we may find some finite Galois extension L/K such that L = k(X) for such an X, where the action of G = Gal(L/K) extends to X. We then

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

Generators of Finite Fields with Powers of Trace Zero and Cyclotomic Function Fields

Using the relation between the problem of counting irreducible polynomials over finite fields with some prescribed coefficients to the problem of counting rational points on curves over finite fields whose function fields are subfields of cyclotomic function fields, we count the number of generators of finite fields with powers of trace zero up to some point, answering a question of Z. Reichste...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Applications of the Class Field Theory of Global Fields

Class field theory of global fields provides a description of finite abelian extensions of number fields and of function fields of transcendence degree 1 over finite fields. After a brief review of the handling of both function and number fields in Magma, we give a introduction to computational class field theory focusing on applications: We show how to construct tables of small degree extensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002